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Computation of Fields in an Arbitrarily
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or

Biological Body by an Iterative
Conjugate Gradient Method
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Abstract —Electromagnetic (EM) fields in a three-dimensional, arbitrar-
ily shaped heterogeneous dielectric or biological body illuminated by a
plane wave are computed by an iterative conjugate gradient method. The
method is a generalized method of moments applied to the volume integral
equation. Because no matrix is explicitly involved or stored, the present
iterative method is capable of computing EM fields in objects an order of
magnitude larger than those that can be handled by the conventional
method of moments. Excellent numerical convergence is achieved. Perfect
convergence to the result of the conventional moment method using the
same basis and weighted with delta functions is consistently achieved in all
the cases computed, indicating that these two algorithms (direct and
iterative) are equivalent.

I. INTRODUCTION

HE COMPUTATION of electromagnetic fields in a

three-dimensional, arbitrarily shaped dielectric or bio-
logical body at frequencies in the resonance region or
lower has been carried out primarily by the conventional
method of moments [1]-[6]. Other numerical methods also
exist but they have been essentially limited to two-dimen-
sional problems except for some recent finite element and
finite difference techniques [7], which have been applied to
frequencies far below the resonance region.

A major limiting factor of the conventional method of
moments [8] is its need for a large computer memory to
store the matrix involved in the computation. For a large
mainframe computer, such as the CDC Cyber 855, a
matrix of about 240X 241 represents a practical upper
limitation. The use of virtual memory or a sparse matrix
technique allows for larger matrices, but the execution
time increases at an astronomical rate, often rendering
these techniques impractical [9]. Recently, the possibility
of using iterative methods for large bodies was investigated
because they can be carried out without the direct involve-
ment of a large matrix, which rapidly exhausts the com-
puter’s memory. As a result, the iterative methods can
solve problems involving a larger number of unknowns
than the conventional method of moments by at least an
order of magnitude [10]-[13]. However, the iterative
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method has only been successfully applied to two-dimen-
sional problems [12], [13]. Computations for three-dimen-
sional problems by iterative methods incur difficulties in
achieving convergence [14].

In this paper, we discuss an iterative computer algorithm
and its numerical results for the problem of a three-dimen-
sional, arbitrarily shaped dielectric or biological body un-
der plane wave illumination. Good numerical convergence
and excellent agreement with the conventional method of
moments were achieved.

II. FORMULATION OF THE PROBLEM

Fig. 1 shows a three-dimensional, arbitrarily shaped
heterogeneous dielectric or biological body illuminated by
a plane wave E’. The problem can be formulated by
replacing the material body occupying V' by an equivalent
volume current J as shown. A volume integral equation
can be written as follows [1]:

£J(r’)~Q£(r,r’) av'+D(r)J(r)=—E'(r)y (1)

where

) 1

Qe=—1wuo(!+pVV)g(r-r’) (2)
o~ klr=

. ! = 3
frr) = ()
I=%X+ 95+ 52 (4)

e,(r)+2
D(r) = (5)

- 3jw[e(r)——_e()*]’

Here € is the permittivity of the medium, ¢, is the relative
permittivity, and e=¢,., r and # denote the position
vectors at the field and source points respectively. k*=
W%, and the hat “~” denotes a unit vector. The symbol
{ denotes a principal-value integration with an infinitesi-
mal sphere centered at r =’ extracted. The issues regard-
ing the handling of the singularity in this case have been
discussed in [1], followed by a number of papers in the
literature (e.g.. {15]).
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Fig. 1. Replacement of an inhomogeneous dielectric of biological body

by an equivalent volume current.

Equation (1) can be written in the following form:

fJ(r’)-I_((r, rYydv'=—E'(r)

v

(6)

which is a more convenient form for later discussion of the
iterative method.

III. DiscreTiZATION BY VOLUME CELLS

Solution of the integral equation, in the form of either
(1) or (6), begins with the process of discretizing the
volume V into L cubic volume cells V},V,,- - -, V;, gener-
ally of different cell sizes, as reported in [1], [4], and [16].
The discretization is carried out by expressing the equiva-
lent volume current J as

L 3

J(") = Z Z JlkBlk(r)

I=1k=1

(7)

where
B/k("):akBlk("):f‘kPm(") (8)

Pm(r)-—-{l rev, 9)

0 elsewhere.
Here &, are unit vectors, which are X, §, and ? for k =1,
2, and 3, respectively, in rectangular coordinates.

In [1}], [4], and [16] the conventional method of moments
[8] was employed with B as the basis functions. The
weighting functions are chosen as

WA(r) =8(Ir = r,)) . (10)
By performing a symmetric product with W% on (1) with J
discretized by (7), for m=1,---, L and k=1,2,3, one
obtains 3L linear equations, or a 3 X (3L +1) matrix
equation, which can be solved for the unknown JX.
IV.  ITERATIVE SOLUTION BY THE CONJUGATE
GRADIENT METHOD

As previously noted, the computer memory requirement
due to the 3L X (3L +1) matrix in the conventional method
of moments is a serious limiting factor. The use of iterative
methods can circumvent this difficulty and allow the num-
ber of unknowns to increase by at least an order of
magnitude. While other iterative methods often suffer from
uncertainties in achieving numerical convergence, the con-
jugate gradient method has been noted for its assured
convergence in at most N steps, where N is the number of
basis functions or unknowns.
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y(r)=/x(r’) K(r.r")dv’

Integral Equation

n=0

In1tial Estimate x(r)=x(r)

F(O)(T)=Y(l‘)"fX(o)(r)'lj_(r,r')du’
Integrated Square Error ERR(°)=f [FOry|*adv

. S(n)(r):/F(n)(l_r),Et(rzyr)dU,

then g™ (r)=s“(r)
(r)
A O

1= [ g K

B(")=f[f(")(r)|2du
N = AW g
A @y =x" () nWg ()
FOry= FOD0ry - @10 )
L Integrated Square Error ERR("):fIF(”)(r)IZdu

If n=1

g™ =8"" ()

If n>1 then

Fig. 2. An iterative conjugate gradient algorithm for an integral equa-
tion pertaining to a three-dimensional problem.

Even though the application of the conjugate gradient
method has been successful in one- and two-dimensional
problems, its use in three-dimensional problems has expe-
rienced difficulties. First, there appears to be unexplain-
able difficulties in achieving numerical convergence [14].
Second, when the number of basis functions, N, is large.
the computation is very costly if N iterations are needed
for convergence. (Fortunately, numerical convergence in
one- and two-dimensional problems generally arrives after
about N/6 iterations [14].) Numerical experiments with
our newly developed conjugate gradient algorithm have
shown that rapid convergence can be consistently achieved
in about N/6 iterations.

The iterative algorithm is an extension of van den Berg’s
two-dimensional conjugate gradient scheme [13] to three-
dimensional problems. Fig. 2 shows the basic scheme
which minimizes the integrated square error in the iterative
process. The normalized integrated square error is defined
as

ERR™
[1x(r))P v’

ERRN = (11)

An immediate question is whether this iterative method
would lead to results different from the conventional
method of moments using the same basis functions as
discussed in Section III. Our answer is that in general the
results between direct and iterative methods are different
because a different choice of weighting functions would
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TABLE 1
COMPARISON OF RESULTS BETWEEN DIRECT AND ITERATIVE MM COMPUTATIONS
CELL DIRECT MM ITERATIVE MM
NO
1ST ITERATION 2ND ITERATION 3RD ITERATION
NUMBER OF INTERATION =1 | NUMBER OF INTERATION =2 | NUMBER OF INTERATION =3
MEAN SQ. ERROR MEAN SQ. ERROR MEAN SQ. ERROR
1 = .1526E+02 = .5937E+01 = .5528€-21
-239L7E+00  .2L262E+00 | -.77133E+00 .76B36E-02| ~.62023E+00 .15577€-01 L23947E+00 . 2L262E+00
2 -LO630E+00  .LOG6LE+O0 | -.11032E+01 -.16759E-02 | ~.98B07E+00 .34514E-02 | .4OB30E+00 .LOGGLE+0D
3 -h962BE+00  .LGMOIE+00 | -.10214E+01 -.28334E-02 | ~.11734E+0) -.B56156-02 | -4962BE+00 .494OI1L+00
4 -49628E+00  .LYLOIE+0D | -, 10214E+01 -,28334E-02 ~.11734E+01 -.85615E-02 L49628E+00 . LINO1E+00
§ | -hO630E+00 .LOEBLE+0D | -. 110326401 -.16759E-02 | ~.9BBO7E+D0 .34514E-02 | .4OG3DE+D0 ,AOGGAE+00
6 -239L7E400  .2L262E+00 | -.77133E+00 .76836E-02 ~.62023E+00 .15577€-0) <239LTE+D0 L 2k262E+00
lead to a different matrix and thus different results. How-
ever, in the present case, the use of pulse functions as the
. . Lot DIELECTRIC SLAB
basis and delta functions for weighting leads to the same
numerical results as the iterative conjugate gradient method z 5
using the same basis functions. _T_
The close relationship between the conventional method 6112|18]24[30|36 .
of moments and the iterative method is discussed in a 5 [11}17|23]29|35
separate paper by the first author, who finds it useful, 4 [10{186[22[28|34 ]
practical, and appropriate to include these two methods, 6 CM 3]9l15/21]27l33 >V X
as well as the reaction integral equation method, within 2| 8l14|200286l32 ]
“ : ,__{
the bf’oalc; context of the “generalized method of mo- 117 13ltol25131 ]
e . —
mnts[.]. . ) . fe——-5 cm | 1cM e
At this point, it may be worthwhile to emphasize that
some of the iterative methods in the literature are directly FRONT VIEW SIDE VIEW
and intimately associated with a matrix representation of
: €= 68.47 - J43.537  2.45 GHz

the operator equation, while in the present algorithm no
matrix is involved. Of course, one can always relate the
present iterative approach to a matrix, but such a connec-
tion is unnecessary and is only useful as a tool in examin-
ing certain properties of the method. The direct depen-
dence on the matrix formulation in some other iterative
methods is the reason why they do not have the advantage
of reduced memory requirements in their computational
process.

V. NUMERICAL RESULTS AND OBSERVATIONS

A general computer program based on the techniques
just described was written and used to solve the problem
of field intensity for a number of dielectric or biological
bodies. Based on our computational results, we observed
that numerical convergence is always achieved in about N
iterations, as it should be, where N is the number of
unknowns or basis functions.

Table 1 shows a comparison of numerical results from
the conventional MM and the present iterative MM for a
dielectric cylinder with a relative permittivity of 71.7—
j6.53. The cylinder is 43.4 mm long and has a square cross
section with 7.24 mm on each side. It is illuminated by a
plane wave of unit amplitude at 2450 MHz with its polar-
ization parallel to, and direction of propagation perpendic-

PLANE WAVE E —8e k"'

INCIDENCE ANGLE: 9i= 90°,¢i= 46°.

Fig. 3. A square slab illuminated by a plane wave is divided into 36
cubic cells with cell numbers shown.
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Fig. 4. Numerical convergence of electric fields for the square slab of
Fig. 3.
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Fig. 6. An I-shaped dielectric slab illuminated by a plane wave is
divided into 32 cubic cells with cell numbers shown.

ular to, the cylinder axis. The cylinder is discretized into
six cubic cells, 1 through 6, with cell 1 and cell 6 being the
end cells. The computed complex magnitude of the compo-
nent of the election field parallel to the cylinder axis in
cells 1 through 6 is displayed in Table I. As can be seen,
excellent convergence is achieved after only three itera-
tions in the iterative MM, with the mean square error
dropping from 5.937 after the second iteration to 0.5528 X
1072 after the next (third) iteration. It is also significant
that the difference in final results between the direct and
iterative MM is so small that it is beyond the five signifi-
cant numbers displayed in the table. In this particular case,
the equivalence between the direct and iterative MM is
clearly demonstrated.

Fig. 3 shows a square dielectric slab illuminated by a
plane wave, which is 1 V/m in electric field intensity in all
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Fig. 7. Numerical convergence of electric fields for the I-shaped slab of
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Fig. 8. Numerical convergence for the I-shaped slab of Fig. 6.

the computations in this paper. The E field is #-polarized
and propagates in the direction of 6, =90° and ¢, = 46°,
which corresponds to a direction of rapid changes in the
scattered field. The slab is divided into 36 cells, each of
which is numbered for reference.

On a CDC Cyber 855, the present computer program
can handle a total of about 11000 unknowns, or 3666 cells.
As the number of unknowns increases, the computer exe-
cution time increases rapidly. It is usually impractical and
expensive in the case of large scatterers to carry out more
iterations than necessary, even though additional iterations
help to establish evidence of convergence. The general
consensus in one- and two-dimensional problems is that
N/6 iterations are usually adequate, where N is the num-
ber of unknowns or basis functions [14]. We have also
observed in our computation of three-dimensional prob-
lems that N/6 iterations are usually sufficient and that the
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Fig. 12. Numerical convergence of the electric fields for the human
body of Fig. 9.

rapidity of convergence depends on the geometry of the
scatterer and the polarization and angle of incidence of the
illuminating field. ,

Fig. 4 shows the computed electric fields in cell 16 and
cell 33 of the dielectric slab in Fig. 3 as a function of the
number of iterations. As can be seen, good results are
obtained after 22 iterations, slightly more than the N/6, or
18, iterations that are usually needed. Fig. 5 shows the
normalized integrated square error (ERRN) of the electric
fields versus the number of iterations. As can be seen. the
normalized integrated square error becomes very small
long before N or 98 iterations are carried out.

Fig. 6 shows a 32-cell I-shaped dielectric slab illumi-
nated by a plane wave propagating in the direction 8 = 90°
and ¢, = 46°. Each cubic cell is 1 cm on each side and is
numerically numbered as shown. The convergence of elec-
tric field computation for this case is exhibited in Fig. 7 for
cell 13 and cell 27. As can be seen. the convergence is
slower than that of the square slab, because the geometry
of the I-shaped slab is more complex. The ERRN versus
the number of iterations for this case is shown in Fig. 8.

Although the present algorithm can handle up to 3666
cells on a CDC Cyber 853, as compared to about 80 cells
or fewer for the conventional moment method algorithm,
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we have not tried to test the maximum capacity of the
computer because of the high cost involved. To demon-
strate that the present algorithm can deal with scatterers
much larger than the conventional moment method, we
computed the electric fields inside 2 human body with its
front and side views shown in Fig, 9. The human body is
divided into 423 cells with 1269 unknowns. The dots are
the centers of the 423 cubic cells which make up the
human body. The plane wave is x-polarized and propa-
gates in the y direction.

The computed electric field intensity (in mV/m) for
each cell on the y = 0 plane of the human body of Fig. 9 is
exhibited in Fig. 10. A total of 75 iterations was predeter-
mined in the computation to limit the cost of the computer
run. In practice, the accuracy in energy deposition in
biological bodies is not critical and errors of 10 to 20
percent are usually acceptable. As shown in Fig. 11 the
ERRN is reduced to an acceptable level of 0.01126 after 75
iterations. The convergence of the electric field intensity is
exemplified in Fig. 12 for cell 9 and cell 63, which are near
the center of the head and the center of the heart, respec-
tively.

Since the computer execution time is a consideration of
practical importance, we have made an estimated run time
and dollar cost on the CDC Cyber 855 at Georgia Tech for
the 423-cell problem, as shown in Fig. 13. It provides a
basis for simple and direct cost estimates for those who are
concerned with the costs in computing for large bodies. As
can be seen, the cost can become prohibitive if the number
of unknowns is large. Fortunately, usually N/6 iterations
are sufficient. In addition, there are techniques to reduce
the cost and run time, which we plan to implement in the
near future.

VI. CoNCLUSIONS

An iterative conjugate gradient algorithm has been de-
veloped to compute the fields in a three-dimensional,
arbitrarily shaped heterogeneous dielectric or biological
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body. Excellent numerical convergence behavior is ob-
served in our computations.

The present algorithm can handle unknowns which are
an order of magnitude larger in number than those that
can be computed by the conventional moment method. A
case involving a 423-cell human body is computed to
demonstrate this feature.
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