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Abstract —Electromagnetic (EM) fields in a three-dimensional, arbitrar-

ily shaped heterogeneous dielectric or biological body illuminated by a

plane wave are computed by an iterative conjugate gradient method. Tbe

method is a generalized method of moments applied to the volume integral

equation. Because no matrix is explicitly involved or stored, tbe present

iterative method is capable of computing EM fields in objects an order of

magnitude larger than those that can be handled by the conventional

method of moments. Excellent numerical convergence is achieved. Perfect

convergence to the result of the conventional moment method using the

same basis and weighted with delta functions is consistently achieved in all

the cases computed, indicating that these two algorithms (direct and

iterative) are equivalent.

I. INTRODUCTION

T HE COMPUTATION of electromagnetic fields in a

three-dimensional, arbitrarily shaped dielectric or bio-

logical body at frequencies in the resonance region or

lower has been carried out primarily by the conventional

method of moments [1]–[6]. Other numerical methods also

exist but they have been essentially limited to two-dimen-

sional problems except for some recent finite element and

finite difference techniques [7], which have been applied to

frequencies far below the resonance region.

A major limiting factor of the conventional method of

moments [8] is its need for a large computer memory to

store the matrix involved in the computation. For a large

mainframe computer, such as the CDC Cyber 855, a

matrix of about 240x241 represents a practical upper

limitation. The use of virtual memory or a sparse matrix

technique allows for larger matrices, but the execution

time increases at an astronomical rate, often rendering

these techniques impractical [9]. Recently, the possibility

of using iterative methods for large bodies was investigated

because they can be carried out without the direct involve-

ment of a large matrix, which rapidly exhausts the com-

puter’s memory. As a result, the iterative methods can

solve problems involving a larger number of unknowns

than the conventional method of moments by at least an

order of magnitude [10] -[13]. However, the iterative
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method has only been successfully applied to two-dimen-

sional problems [12], [13]. Computations for three-dimen-

sional problems by iterative methods incur difficulties in

achieving convergence [14].

In this paper, we discuss an iterative computer algorithm

and its numerical results for the problem of a three-dimen-

sional, arbitrarily shaped dielectric or biological body un-

der plane wave illumination. Good numerical convergence

and excellent agreement with the conventional method of

moments were achieved.

II. FORMULATION OF THE PROBLEM

Fig. 1 shows a three-dimensional, arbitrarily shaped

heterogeneous dielectric or biological body illuminated by

a plane wave E*. The problem can be formulated by

replacing the material body occupying V by an equivalent

volume current J as shown. A volume integral equation

can be written as follows [1]:

/J(~’)E(r,r’)du’+D (,)J(~)= -E’(r) (1)
11

where

~=-’ti~o(~+:vvlg(r”)

~–#lr-~’l
g(r, r’) =

4n{r–t”l

~=.fi+j$+?l

c,(r)-t2
D(r)=– —

3Ju[((f’) -60] “

(2)

(3)

(4)

(5)

Here c is the permittivity of tha medium, c, is the relative

permittivity, and c = cf,. r and r’ denote the position

vectors at the field and source points respectively. k z =

U2C,po and the hat “.” denotes a unit vector. The symbol

f denotes a principal-value integration with an infinitesi-

mal sphere centered at r = r’ extracted. The issues regard-

ing the handling of the singularity in this case have been

discussed in [1], followed by a number of papers in the

literature (e.g.. [15]).
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E E

Fig. 1. Replacement of an inhomogeneous dielectric of biological body

by an equivalent volume current.

Equation (1) can be written in the following form:

which is a more convenient form for later discussion of the

iterative method.

III. DISCRETIZATION BY VOLUME CELLS

Solution of the integral equation, in the form of either

(1) or (6), begins with the process of discretizing the

volume V into L cubic volume cells Vl, Vz,. . . . P’~, gener-

ally of different cell sizes, as reported in [1], [4], and [16].

The discretization is carried out by expressing the equiva-

lent volume current J as

J(r) = ~ fi J~B;(r) (7)
[=lk=l

where

B/k(r) = ilkl?f(r) = i2#m(r)

Pm(r) z

{

1 rGVm

O elsewhere.

(8)

(9)

Here i2~ are unit vectors, which are 2, j, and 2 for k =1,

2, and 3, respectively, in rectangular coordinates.

In [1], [4], and [16] the conventional method of moments

[8] was employed with Br as the basis functions. The

weighting functions are chosen as

W~(r)=8( lr–rm/) ilk. (lo)

By performing a symmetric product with W: on (1) with J

discretized by (7), for m = 1,. ... L and k = 1,2,3, one

obtains 3L linear equations, or a 3L X (3L +1) matrix

equation, which can be solved for the unknown J;.

IV. ITERATIVE SOLUTION BY THE CONJUGATE

GRADIENT METHOD

As previously noted, the computer memory requirement

due to the 3L x (3L + 1) matrix in the conventional method

of moments is a serious limiting factor. The use of iterative

methods can circumvent this difficulty and allow the num-

ber of unknowns to increase by at least an order of

magnitude. While other iterative methods often suffer from

uncertainties in achieving numerical convergence, the con-

jugate gradient method has been noted for its assured

convergence in at most N steps, where N is the number of

basis functions or unknowns.

]ntegral Equation \y (r)=
J

x(r’) K(r, r’)du—v

In]t]al Estimate x(r) =x[o)(r)

J
F(o)(r) =y(r)- , x[”)(r)~(r, r’)du’

Integrated Square Error ERR(0)= jlF’(0)(r)12du
v

r ‘(n)(r)’’”’z’(r’’r
If n= 1 then g(”)(r) =SIO)(r)

~(n)
If n> 1 then g(n)(r) =S(n-l)(r)+— ~(n_1)9(n-l)(r)

I f(n)(r)=
J

g(n)(r’) .~(r, r’)rlu’
v

~(.)= ~(.),~(.)

X( ’’(r) =x[”-’) (r)+rf(”)g(n](r)

F(nJ(r)=F ‘n-’) (r)-q(”)f(n)(r)

1- Integratecf Square Error ~RR(n)= /1 F(n)(r) lzdu
v

Fig. 2. An iterative conjugate gradient algorithm for an integral equa-

tion pertaining to a three-dimensional problem.

Even though the application of the conjugate gradient

method has been successful in one- and two-dimensional

problems, its use in three-dimensional problems has expe-

rienced difficulties. First, there appears to be unexplain-

able difficulties in achieving numerical convergence [14].

Second, when the number of basis functions, N, is large.

the computation is very costly if N iterations are needed

for convergence. (Fortunately, numerical convergence in

one- and two-dimensional problems generally arrives after

about N/6 iterations [14].) Numerical experiments with

our newly developed conjugate gradient algorithm have

shown that rapid convergence can be consistently achieved

in about N/6 iterations.

The iterative algorithm is an extension of van den Berg’s

two-dimensional conjugate gradient scheme [13] to three-

dimensional problems. Fig. 2 shows the basic scheme

which minimizes the integrated square error in the iterative

process. The normalized integrated square error is defined

as

ERR(N)

ERRN =

/lx(r’)12du”

(11)

c,

An immediate question is whether this iterative method

would lead to results different from the conventional

method of moments using the same basis functions as

discussed in Section III. Our answer is that in general the

results between direct and iterative methods are different

because a different choice of weighting functions would
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TABLE I

COMPAEUSON OF RESULTS BETWEEN DIRECT AND ITERATWE MM COMPUTATIONS

:ELL DIRECT MM
ITERATIVE MM

JO
1ST ITERATION 2ND ITERATION 3RD ITERATION

NUMBEROF INTEGRATIoN-1 NUMBEROF INTEGRATION=2 NUMBEROF INTEGRATION-3
HEAN SQ. ERRoR MEAN SQ. ERROR MEAN SQ. ERROR

1
= .1526E+02

.239k7E+O0 .24262E+O0
= .5937E+01 - .5521]E-21

-.77133E+O0 .76836E.02 -.62023E+o0 .15577E-01 .239h7E+l)0 .2k262E+oo

2 .L0630E+o0 .40664E+o0 ‘. I 1032E+OI -.16759E-02 -.98807E+O0 .3451 JIE-02 .40630E+o0 .ko6611E+oo

3 .k9628E+oo ,49401 E+oo -.10214E+O1 -.28334E-02 -.11734E+01 -.85615E-02 .h9628E+oo .4940 i L+OO

4 .49628E+O0 .49 bolt+oo -. I0214E+01 -.28334E-02 -.11734E+01 -.85615E-02 .k9628E+120 .4940 I E+OO

5 .40630E+o0 .40664E+o0 ‘. I1032E+O1 -.16759E-02 -. 98807E+O0 .345 14E-02 .40630 E+’00 .4066 JIE+o0

6 .23947E+O0 .2h262E+oo -.77133E+O0 .76836E-02 -.62023E+o0 . 15577E-01 .23947E+O0 .24262E+O0

lead to a different matrix and thus different results. How-

ever, in the present case, the use of pulse functions as the

basis and delta functions for weighting leads to the same
DIELECTRIC SLAB

numerical results as the iterative conjugate gradient method $
using the same basis functions.

The close relationship between the conventional method

of moments and the iterative method is discussed in a

separate paper by the first author, who finds it’ useful,

practical, and appropriate to include these two methods,

as well as the reaction integral equation method, within

the broad context of the “generalized method of mo-

ments” [17].

At this point, it may be worthwhile to emphasize that

some of the iterative methods in the literature are directly

and intimately associated with a matrix representation of

the operator equation, while in the present algorithm no

matrix is involved. Of course, one can always relate the

present iterative approach to a matrix, but such a connec-

tion is unnecessary and is only useful as a tool in examin-

ing certain properties of the method. The direct depen-

dence on the matrix formulation in some other iterative

‘methods is the reason why they do not have the advantage

of reduced memory requirements in their computational

process.

V. NUMERICAL RESULTS AND OBSERVATIONS

A general computer program based on the techniques

just described was written and used to solve the problem

of field intensity for a number of dielectric or biological

bodies. Based on our computational results, we observed

that numerical convergence is always achieved in about N

iterations, as it should be, where N is the number of

unknowns or basis functions.

Table I shows a comparison of numerical results from
the conventional MM and the present iterative MM for a

dielectric cylinder with a relative perrnittivity of 71.7 –

j6.53. The cylinder is 43.4 mm long and has a square cross

section with 7.24 mm on each side. It is illuminated by a

plane wave of unit amplitude at 2450 MHz with its polar-

ization parallel to, and direction of propagation perpendic-

T
6 CM Y

1 +!x

FRONT VIEW SIDE VIEW

&r ❑ 68.47 - j43.537 2.45 GHz

i _-jk. r
PL.ANE WAVE E = 8 e

INCIDENCE ANGLE: ei a 90°, ‘?i❑ 46°.

Fig. 3. A square slab dluminated by a plane wave is divided into 36

cubic cells with cell numbers shown.
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Fig. 4. Numerical convergence of electric fields for the square slab of
Fig. 3.
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Fig. 5. Numerical convergence for the square slab of Fig. 3

I - SHAPED DIELECTRIC SLAB
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Fig. 6. An I-shaped dielectric slab illuminated by a plane wave is

diwded into 32 cubic cells with cell numbers shown.

ular to, the cylinder axis. The cylinder is discretized into

six cubic cells, 1 through 6, with cell 1 and cell 6 being the

end cells. The computed complex magnitude of the compo-

nent of the election field parallel to the cylinder axis in

cells 1 through 6 is displayed in Table I. As can be seen,

excellent convergence is achieved after only three itera-

tions in the iterative MM, with the mean square error

dropping from 5.937 after the second iteration to 0.5528X

10 -‘1 after the next (third) iteration. It is also significant

that the difference in final results between the direct and

iterative MM is so small that it is beyond the five signifi-

cant numbers displayed in the table. In this particular case,

the equivalence between the direct and iterative MM is

clearly demonstrated.

Fig. 3 shows a square dielectric slab illuminated by a

plane wave, which is 1 V/m in electric field intensity in all
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Fig. 7. Numerical convergence of electric fields for the I-shaped slab of

Fig. 6,
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Fig. 8. Numerical convergence for the I-shaped slab of Fig. 6

the computations in this paper. The E field is d-polarized

and propagates in the direction of 0, = 90° and +, = 46°,

which corresponds to a direction of rapid changes in the

scattered field. The slab is divided into 36 cells, each of

which is numbered for reference.

On a CDC Cyber 855, the present computer program

can handle a total of about 11000 unknowns, or 3666 cells.

As the number of unknowns increases, the computer exe-

cution time increases rapidly. It is usually impractical and

expensive in the case of large scatterers to carry out more

iterations than necessary, even though additional iterations

help to establish evidence of convergence. The general

consensus in one- and two-dimensional problems is that

N/6 iterations are usually adequate, where N is the num-

ber of unknowns or basis functions [14]. We have also

observed in our computation of three-dimensional prob-

lems that N/6 iterations are usually sufficient and that the
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Fig. 9. Front and side views of a 423-cell human body illuminated by a
plane wave.

Fig. 10, Electric field intensity (in mV/m) in each cell on the y = O
plane of the human body of Fig. 9.
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Fig. 11. Numerical convergence for the lhuman-body problem of Fig. 9
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Fig. 12. Numerical convergence of the electric fields for the human

body of Fig. 9.

rapidity of convergence depends on the geometry of the

scatterer and the polarization ancl angle of incidence of the

illuminating field.

Fig. 4 shows the computed electric fields in cell 16 and

cell 33 of the dielectric slab in Fig. 3 as a function of the

number of iterations. As can be seen, good results are

obtained after 22 iterations, slightly more than the N/6, or

18, iterations that are usually needed. Fig. 5 shows the

normalized integrated square error (ERRN ) of the electric

fields versus the number of iterations. As can be seen, the

normalized integrated square error becomes very small

long before N or 98 iterations are carried out.

Fig. 6 shows a 32-cell I-shaped dielectric slab illumi-

nated by a plane wave propagating in the direction 8, = 90°

and $( = 46°. Each cubic cell is 1 cm on each side and is

numerically numbered w shown. The convergence of elec-

tric field computation for this case is exhibited in Fig. 7 for

cell 13 and cell 27. As can be seen. the convergence is

slower than that of the square slab, because the geometry
of the I-shaped slab is more complex. The ERRN versus

the number of iterations “for this, case is shown in Fig. 8.

Although the present algorithm can handle up to 3666

cells on a CDC Cyber 855, as compared to about 80 cells

or fewer for the conventional moment method algorithm,



1124 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 37, NO. 7, JULY 1989

SCU, 15m
1269 UNKNOWNS ON CYBER 855
--- DOLLARS

,,

— HOURS
..”

400 -
.,”,/,

,.,
,-

m ,.,
w ,,,,
~ 3C0 -

m,/,
z

,,,
,/,

z ,,,
,.,

,,,
w 2G0 -

a

z
/,

F - 5CO0

loo -
- 25CU

NUMBER OF ITERATIONS

Fig. 13. An estimate for the execution time and dollar cost.

we have not tried to test the maximum capacity of the

computer because of the high cost involved. To demon-

strate that the present algorithm can deal with scatterers

much larger than the conventional moment method, we

computed the electric fields inside a human body with its

front and side views shown in Fig. 9. The human body is

divided into 423 cells with 1269 unknowns. Tlie dots are

the centers of the 423 cubic cells which make up the

human body. The plane wave is x-polarized and propa-

gates in the y direction.

The computed electric field intensity (in mV/m) for

each cell on the y = O plane of the human body of Fig. 9 is

exhibited in Fig. 10. A total of 75 iterations was predeter-

mined in the computation to limit the cost of the computer

run. In practice, the accuracy in energy deposition in

biological bodies is not critical and errors of 10 to 20

percent are usually acceptable. As shown in Fig. 11 the

ERRN is reduced to an acceptable level of 0.01126 after 75

iterations. The convergence of the electric field intensity is

exemplified in Fig. 12 for cell 9 and cell 63, which are near

the center of the head and the center of the heart, respec-

tively.

Since the computer execution time is a consideration of

practical importance, we have made an estimated run time

and dollar cost on the CDC Cyber 855 at Georgia Tech for

the 423-cell problem, as shown in Fig. 13. It provides a

basis for simple and direct cost estimates for those who are

concerned with the costs in computing for large bodies. As

can be seen, the cost can become prohibitive if the number

of unknowns is large. Fortunately, usually N/6 iterations

are sufficient. In addition, there are techniques to reduce

the cost and run time, which we plan to implement in the

near future.

VI. CONCLUSIONS

An iterative conjugate gradient algorithm has been de-

veloped to compute the fields in a three-dimensional,

arbitrarily shaped heterogeneous dielectric or biological

body. Excellent numerical convergence behavior is ob-

served in our computations.

The present algorithm can handle unknowns which are

an order of magnitude larger in number than those that

can be computed by the conventional moment method. A

case involving a 423-cell human body is computed to

demonstrate this feature.
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